Characterization of nonrandom chromosomal gains and losses in multiple myeloma by comparative genomic hybridization.

نویسندگان

  • J C Cigudosa
  • P H Rao
  • M J Calasanz
  • M D Odero
  • J Michaeli
  • S C Jhanwar
  • R S Chaganti
چکیده

Clonal chromosomal changes in multiple myeloma (MM) and related disorders are not well defined, mainly due to the low in vivo and in vitro mitotic index of plasma cells. This difficulty can be overcome by using comparative genomic hybridization (CGH), a DNA-based technique that gives information about chromosomal copy number changes in tumors. We have performed CGH on 25 cases of MM, 4 cases of monoclonal gammopathy of uncertain significance, and 1 case of Waldenstrom's macroglobulinemia. G-banding analysis of the same group of patients demonstrated clonal chromosomal changes in only 13 (43%), whereas by CGH, the number of cases with clonal chromosomal gains and losses increased to 21 (70%). The most common recurrent changes detected by CGH were gain of chromosome 19 or 19p and complete or partial deletions of chromosome 13. +19, an anomaly that has so far not been detected as primary or recurrent change by G-banding analysis of these tumors, was noted in 2 cases as a unique change. Other recurrent changes included gains of 9q, 11q, 12q, 15q, 17q, and 22q and losses of 6q and 16q. We have been able to narrow the commonly deleted regions on 6q and 13q to bands 6q21 and 13q14-21. Gain of 11q and deletion of 13q, which have previously been associated with poor outcome, can thus be detected by CGH, allowing the use of this technique for prognostic evaluation of patients, without relying on the success of conventional cytogenetic analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prognostic and biologic significance of chromosomal imbalances assessed by comparative genomic hybridization in multiple myeloma.

Cytogenetic abnormalities, evaluated either by karyotype or by fluorescence in situ hybridization (FISH), are considered the most important prognostic factor in multiple myeloma (MM). However, there is no information about the prognostic impact of genomic changes detected by comparative genomic hybridization (CGH). We have analyzed the frequency and prognostic impact of genetic changes as detec...

متن کامل

Comparative genomic hybridization of human malignant gliomas reveals multiple amplification sites and nonrandom chromosomal gains and losses.

Nine human malignant gliomas (2 astrocytomas grade III and 7 glioblastomas) were analyzed using comparative genomic hybridization (CGH). In addition to the amplification of the EGFR gene at 7p12 in 4 of 9 cases, six new amplification sites were mapped to 1q32, 4q12, 7q21.1, 7q21.2-3, 12p, and 22q12. Nonrandom chromosomal gains and losses were identified with overrepresentation of chromosome 7 a...

متن کامل

Translocation t(11;14) (q13;q32) and genomic imbalances in multi-ethnic multiple myeloma patients: a Malaysian study

More than 50% of myeloma cases have normal karyotypes under conventional cytogenetic analysis due to low mitotic activity and content of plasma cells in the bone marrow. We used a polymerase chain reaction (PCR)-based translocation detection assay to detect BCL1/JH t(11;14) (q13;q32) in 105 myeloma patients, and randomly selected 8 translocation positive samples for array comparative genomic hy...

متن کامل

The value of fluorescence in situ hybridization for the detection of 11q in multiple myeloma.

BACKGROUND AND OBJECTIVES A large number of chromosomal abnormalities have been detected in multiple myeloma (MM). The most frequent are chromosome 13q deletions and translocations affecting the immunoglobulin heavy chain gene (IGH). Recent studies using comparative genomic hybridization (CGH) have shown that gains of 11q represent one of the most frequent genomic changes in MM. However CGH is ...

متن کامل

Genomic studies of multiple myeloma reveal an association between X chromosome alterations and genomic profile complexity.

The genomic profile of multiple myeloma (MM) has prognostic value by dividing patients into a good prognosis hyperdiploid group and a bad prognosis nonhyperdiploid group with a higher incidence of IGH translocations. This classification, however, is inadequate and many other parameters like mutations, epigenetic modifications, and genomic heterogeneity may influence the prognosis. We performed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 91 8  شماره 

صفحات  -

تاریخ انتشار 1998